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ABSTRACT 

We shall prove some stability property of the graded Lie algebra ~n of 

certain derivations associated with pure sphere braid group on n strings; 

in fact, that ~n --~ ~S for n > 6. These Lie algebras ~Dn are connected 

with some big/-adic Galois representations, and the stability property is 

related to some conjecture of Grothendieck. 

Introduct ion 

Let ~3n(n > 4) be the graded Lie algebra over Q associated with the lower 

central series of the pure sphere braid group on n strings, and Dn be the graded 

Lie algebra over Q consisting of all "S,~-invariant special" outer derivations of 

~,~ (see §1 below). This algebra Dn has drawn our attention in connection with 

the action of the Galois group Gal(l~/Q) on the pro-/ fundamental group of 

p l  _ {0, 1, ~o}. A certain basic Galois Lie algebra g(0 associated with this action 

is contained in D~ ® Qt for each n > 4 mad each prime 1 ([5]§5). Tile structure 

of ~3 n was determined by T. Kohno [8] (see § 1.1 below), but as for 29,,, we know 

much less. There are natural sequences of projections 

~ n  --"~""" "'4~5""4~4, 

---*:Dn --*'" • ---*:D5 --'* :D4, 

in which the a r r o w s  ~ n " - ~ n _ l  are surjective (with big kernels), while Dn--'D,-a 

are in j ec t ive  [4] (cf. [7] for some generalizations), both for n > 5. The main 
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purpose of this paper is to prove that Dn--'7?n-1 is bi ject ive for n _> 6. (This 

gives an alllrmative ariswer to the question "~D5 = Doo?" raised in [5] (Q5.3.4(i)).) 

Thus, 

• .. -%Z),~ • • • --%~5 ~ P 4  

(and ~577.:D4; see §1.2). It is an open question whether g(0 ~ T)5 ® Ql and 

(hence) T)5 gives a common Q-structure for the l-adic Lie algebras g(0. This 

stability property may be regarded as a graded Lie Mgebra version, in the case 

of genus 0, of a more general property of the "Teichmfiller Lego" predicted by 

Grothendieck [2] (see also [5] §3.3, §5.3; [1] §4, especially a question raised a few 

lines after the formula (4.13)). 

The main results are: Main Theorem (§1.2), Theorem 1 (§2.4), Theorem 2 and 

Proposition 9 (§4.2). 

About the proofs. Since the injectivity of ~n~:Dn_l (n  >_ 5) was already 

established [4], the question is the extendability of each element of T~5 to that of 

~n (n _> 6). The author obtained the first proof of the extendability by using 

the action of the Grothendieck-Teichm/iller group GT(k) on B,~(k) defined in 

Drinfeld [1]. Here, k is some field of characteristic 0, Bn is the plane braid group 

on n strings, and Bn(k) is a certain "k-nilpotent completion" associated with Bn. 

The graded Lie algebra of GT1 (k)(C GW(k)) is isomorphic to ~5 ® k (compare our 

Theorem 1 with [1] §§5, 6), and it can be checked that the above action induces 

an "n-compatible" system of Lie algebra homomorphisms T~---,T~,, (n > 5). 

This leads directly to the extendability. But in this proof, verifications of some 

technical points are fairly involved and lengthy. We shall therefore choose another 

way and give a proof which lies within the framework of graded Lie algebras. 

1. Def ini t ions  and the  s ta tement  of  the  main result 

1.1 The graded Lie algebra gl n over Q (n >_ 4) has the following presentation: 

Generators xij (1 _< i,j <_ n); 

Relations(i) x i i = 0  ( l < i < n ) ,  x i j = z j i  (l _< i , j  <_ n); 

(ii) ~ x i j = 0  ( l < i < n ) ;  
j = l  

(iii) [ z i j , zk t ]=0  if {i , j}Cl{k,l}=¢. 

The grading deg(zii) = 1 (1 < i,j <_ n). 
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We denote by gr"g3,  the homogeneous part of ~,~ of degree m (m > 1). It is 

easy to see that xij + xjk + xki commutes with xii, xjk, xki for any indices i , j ,  k, 
and that  

(1.1.1) xij = E ' x k t '  

where the summation ~ '  is over all indices k, I with k < I and {k, l} t3 {i , j}  = ¢. 

The symmetric group S ,  acts on ~, ,  via zij -~ x~i,~j (cr 6 S,) ,  inducing a 

linear action on g r ' ~ , ,  for each m. 

When n = 4, one has, by (1.1.1), x12 = x34(:= x), x2a = x14(:= y), x,3 = 

x24(:= z), with x + y + z = 0, and gl 4 is a free Lie algebra on x, y. The group .94 

acts on ~34 through its quotient _ S3 as substitutions of x, y, z. 

When n > 5, ~ ,  is a successive extension of free graded Lie algebras of ranks 

2, 3 , . . . ,  n - 2. To see this, let Ni (1 < i < n) denote the Lie subalgebra of ~,,  

generated by x i l , . . . , x i , .  Then ([4]; Prop 3.2.1, its proof and Prop 3.3.1) N~ 

is an ideal, which is free of rank n - 2, being generated by any n - 2 members 

among the xij (1 < j < n , j  # i). Moreover, gl , /Ni  -~ ~ , - 1 .  Therefore, ~ ,  

is a successive extension of free graded Lie algebras (of ranks 2, 3 , . . . ,  n - 2). 

In particular, it has trivial center. For each i , j  (1 < i , j  < n), i # j ,  let Cij 

denote the centralizer of xlj in ~3,. Then (loc. cit) Cij is generated by xkl for 

{k,l} Cl {i,j} = ¢, and 

(1.1.2) 

In particular, 

(1.1.3) 

+ = n Cq = q. j ( c  

grm~3, = grmNi @ grmCij (m > 1). 

This decomposition will be often used later. 

1.2 A derivation of ~, ,  is a Q-linear endomorphism D of ~ ,  such that 

D([y,y']) = [Dy, y'] + [y, Dy'] (y,y' e ~3n). 

It is called special  if for each i , j  (1 _< i , j  <_ n) there exists some tij E ~n such 

that D(xij) = [tij, xij]. Special derivations of ~ n  form a graded Lie algebra; the 

degree m part consists of those D with tij E grm~3, (all i , j) ,  and [D,D'] := 

D o D' - D' o D. This algebra contains the inner derivations as homogeneous 

ideal, and the quotient will be called the (graded Lie) algebra of special  o u t e r  



138 Y. IHARA Isr. J. Math .  

derivations. If D is a derivation of ~,~ and a E S , ,  then a o D o a -1 is again a 

derivation. This D ~ a o D o a -1 induces an S,-action on the algebra of special 

outer derivations. We define :D, to be the graded Lie algebra over Q consisting 

of all S,-invariant special outer derivations of q3 n. 

Now let n _> 5. Then each special derivation D of ~3 n leaves the kernel Nn = 

( x , 1 , . . . , x , , . , - 1 )  of the projection ~, ,  ---* ~3n_ 1 defined by xij --* xij (1 < i , j  < 

n - 1) stable, and hence D induces a special derivation D of ~ , , -1 .  This D --* D 

induces a homomorphism ¢,, : :D, ~ :Dn-l. We have shown [4] that ¢ ,  is 

injective (n >_ 5). The main goal of this note is to give a proof of: 

MAIN THEOREM: Cn is bijective for n > 6. 

Thus, Cn induces: 

-% 2~. -% .-.  --% D5 ~ ~4. 

Ihara-Terada and Drinfeld have independently verified that dimgrT/95 = 1 < 

2 = dimgrrD4 ([1][6]). 

Remark 1: It is easy to see that grlDa = (0). Therefore, g r iD ,  = (0) for all 

n > 4, by the injectivity of ¢ , .  So, in the following study of grm:Dn, we can 

restrict ourselves to the case m > 1. 

2. T h e  y - n o r m a l i z a t i o n ;  :D4 a n d  :D5 

2.1 For each n > 4, we shall make use of the following set of elements yi _ (n) 
- -  = Yi 

of ~3n; 

i--1 n 

(2.1.1) Yi = E Xij = -- E xij (2  < i < n - -  1). 
1=1 j = i + l  

Then, clearly, y2 , . . . ,  y . -1  axe mutually commutative, yl = x12, y . -1  = - x . - 1 , . ,  

and 

(2.1.2) Y2 + " "  + Y,-I = 0. 

PROPOSITION 1: 

(i) I f z  E grm~fln (m > 1) commutes with edl yi (2 < i < n - 1), then z = 0; 

(ii) Each class of special derivations modulo inner derivations o f ~ ,  of degree 

m > 1 contains a unique derivation D such that 

(2.1.3) D(y2) . . . . .  D(Un-1) = O. 
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Proof: 

(i) Induction on n >_ 4. For n = 4, gi4 is free on x ( :  x,2), y(= x23), and 

Y2 = -Y3 = x. But the centralizer of x in gi4 is Qx c grlgi4; hence this is valid 

for n = 4. Now let n > 5 and assume that (i) is valid for n - 1. Let z 6 g r " g i ,  

(m > 1) commute with yi = yl ") (2 < i < n - 1). Then, since the projection 

of yi- (") o n  ~ . - 1  = ~n/N. is Yi- (n-l)  (2 < i < n -- 2), the induction assumption 

implies that the projection of z on gi , -1  must vanish; hence z 6 N, .  But since 

z commutes also with - (") and AT, is free on x2n, . . ,  x , - 1 . ,  (and Yn--1 ~--Xn--I,n, 

moreover degz > 1), z must be 0. 

(ii) The uniqueness is obvious by (i). As for the existence, we shall not need 

the assumption m > 1. We proceed by induction. When n = 4, (ii) is obvious, 

as  Y2 = --Y3 = 2712. 

Now let n > 5 and assume that (ii) is valid for n - 1. Then, by using the 

projection gi ,  ~ g l ,_  1 and the induction assumption, we see easily that a given 

class (modulo inner derivations) contains such a derivation D'  that D'(yi)  6 N ,  

(2 < i < n - 2). As D'  is special and y,,-1 = - z , - l , , ,  D ' (y , -1)  = [ t ' ,y , -1]  

with some t' 6 gi , .  As gi,~ = C , - 1 , ,  + N , ,  we may assume t' 6 N , .  Put  

D = D ' - I n t ( t ' )  (Int(t '): the inner derivation * ~ It', *]). Then D(y,,-1) = 0, and 

as t '  6 N ,  and Nn is an ideal, D(yl) 6 N ,  (2 < i < n - 2 ) .  But since [Yi, Y , - , ]  = 0 

and D ( y , _ , )  = 0, we have [D(yi) ,Y,- l]  = 0. Therefore, D(yi) 6 Cn-l ,n I'~ g , .  

As degD(yi)  > degyi = 1, we have D(yi) = 0 also for 2 < i < n - 2. Therefore, 

D satisfies the required property. | 

A special derivation D of gin will be called y -n o rma l i z e d  if it satisfies (2.1.3). 

By Proposition 1 (and Remark 1), each element of :Dn is represented by a unique 

y-normalized special derivation D. The corresponding element of :D, will be 

denoted by {D}. Note that if D, D' are y-normalized, then so is [D, D']. Thus, 

29, is isomorphic to the algebra of all those y-normalized special derivations of 

gin that are Sn-invariant modulo inner derivations. 

As a representative modulo inner derivations for each element of 7),,  we may 

also choose an Sn-invariant derivation (which is unique only up to inner deriva- 

tions w.r.t. Sn-invariant elements of gin). But it seems that the y-normalized 

representative is more useful for our present purpose. 

2.2 THE CASE n = 4 .  Recall that gla is free on x = x l ~  =x34 a n d y = x 2 3  = 

x l , ,  and x + y + z = 0 for z = x13 = x 2 4 .  
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PROPOSITION 2: 

(i) grl:D, = (0). 

(ii) For m > 1, let f = f (x ,y)  run  over all elements ofgrm~34 satisfying 

(2.2.1) f (x ,  + f (u ,x )  = 0, 

(2.2.2) [y, f (x ,  y)] + [z, f (x ,  z)] = 0, 

and for each such f ,  c a / / D / =  D~ 4) the derivation o f ~ 4  defined by 

(2.2.3) DI(x ) = O, Dl(y ) = [y,f(x,y)]. 

(iii) 

Then D/  is a y-normedized spedal derivation of  ~34 of  degree m which is 

S4-invariant modulo inner derivations, and f --* {Dr} gives a Q-module 

isomorphism between the space of  all f E grrn~34 satisfying (2.2.1) and 

(2.2.2) and the space grin:D4. 

From (2.2.1) and (2.2.2) foIlows the 3-eycle relation in ~34: 

(2.2.4) f (x ,  y) + f(y,  z) + f (z ,  x) = O, 

(iv) [D/,D/,] = D/,, , with f" = [f,f'] + Dy(f') - Dy,(f ). 

Proof'. As these are essentially known ([1], [31, [41), we shall only sketch the 

proof. Let m > 1 and {D} E grmT~4, with D: y-normalized. Then  D(x) = O, 

D(y) = [y, f]  and D(z) = [z, g], with some f ,  g E grm~34 • As x + y + z = 0, we 

h ave 

(2.2.5) [y, f]  + [z, g] = 0. 

Now 5'4 acts on ~34 via its quotient  _~ Sa as subst i tut ions of x, y, z, and D is 

S4-invariant modulo  inner derivations. Hence 

(2.2.6) aDc~ -1 - D = Int a(a) 

with some a(a) E grm~4 for each subst i tut ion a of x, y, z. 

First,  take a: x --* x, y ~ z. Then  the derivation (2.2.6) applied to x gives 

[a(a), x] = 0; hence a(a) = 0 (as m > 1). Therefore,  (2.2.6) applied to y gives 

[y, ag - f] = 0; hence g = a(f).  This, together  with (2.2.5), gives (2.2.2). Now 

take Or: X ~ y, Z ~ Z. Then  (2.2.6) gives a(a) = f (x ,y )  = - f ( y , x ) ;  hence 
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(2.2.1). Conversely, if f satisfies (2.2.1) (2.2.2), Df  is obviously y-normalized, 

special, and S4-invariant modulo inner derivations. This settles (ii). 

(iii) From (2.2.2), we obtain by changing variables: 

(2.2.7) [z, Y(v, z)] + Ix, Y(v, x)] = 0. 

By substracting (2.2.7) from (2.2.2) and using (2.2.1), we obtain 

Ix -t- y, f ( x ,  y) q- f (y ,  z) q- f ( z ,  x)] = 0; 

hence (2.2.4). 

(i) and (iv): Str ghtforward. Z 

2.3 Before proceeding to the case n = 5, we need: 

PROPOSITION 3 : /1  e 1 < i , j , k , l  < n, {i,j} fq {k, l}  = ¢ and z 6 ~3n, then 

[xij[xkt,z]] = 0 holds i f  and only i fz  E Cij + Ckz. 

Proof: First, we note that [xij,xkt] = 0 and hence [Xij[Xkl, Z]] = [Xkl[Xij,Z]]. 
Now the "if" implication is obvious. To prove the other, assume [xij[xkt, z]] = 0 

and decompose z as z = ni + cij (ni E Ni, cij E Cij). By the assumption on 

z,[xkt,z] E Cii. Also, clearly, [xkt,cii] e Cij. Therefore, [xkt,ni] E Cii. But 

Ni being an ideal, [xkt, ni] e Ni. Therefore, [xkt, nil = 0 by (1.1.3). Therefore, 

ni E Ckl. Therefore, z = ni +ci i  E Ckt + Cij. | 

2.4 THE CASE n = 5. In this section, we shall prove the "only if" implication 

of the following 

THEOREM 1: * Let f 6 grm~34 and {D~ 4)} E grin294 be as in Proposition 2. 

Then { 0  (4) } belongs to the image o[¢5::D5 ~ 7:)4 i f  and only i f  f satisfies the 

following 5-cycle relation in ~35 : 

(2.4.1) f (xz2 ,x23)+ f(xz4,x4s)  +f (xs1 ,xz2) - l - f (xz3 ,x34)  + f ( x a s , X 5 1 ) : O .  

Here, in general, for any Lie algebra £ over Q and a, b E/ : ,  f (a ,  b) denotes the 

image of f under the Lie homomorphism ~34 ~ Z: defined by x ~ a, y ~ b. 

The "if" implication in Theorem 1 will be proved in §4. 

* This theorem was obtained in 1988 and was used by Terada to check that some 
element of grrD4 is not extendable to grr:Ds. 
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Proof of the "only if" implication: Suppose  tha t  there exists {D} ~ grmT~5 

(m > 1), with D: y-normalized,  such tha t  ¢~{D} = {D~4)}. As y2 = x~z, 

y3 = x ~  + x2~ and y4 = -x4~,  we have 

[C la im]  

D ( x ~ )  = D ( x ~  + xza) = D(x4~) = 0. 

D(x~3) = [xz~, f ( x ~ ,  x~) ] .  

Indeed,  pu t  D(x23) = [~23,t231, t~3 e g r " ~ 5 .  Since [x~3,x4s] = 0 and  D(x45) = 

0, [D(x23),x45] = 0; hence t23 E C2~ + C45, by Propos i t ion  3. Thus ,  we 

m a y  assume t23 E C45 = (x~2,x23,x13) ( the Lie suba lgebra  of ~35 genera ted  

by x12,x23,x13 ). As m > 1 and x12 + x 2 3  + x l a  = x4~ is central  in C45, 

But  since {D} extends  {D(/4)}, D mus t  extend D (4), and  hence t23 E 

the image oft23 on ~4  ~ ~35/N~ must  be  f .  Therefore ,  t23 = f ( x~ , x~3 ) ,  whence 

the claim. 

Now for each a ~ S~, 

aDa -~ 

with a unique a(a) E grm~5 ,  and a 

- D = I n t  a(a) 

a(a) is a 1-cocyle; 

~ ( ~ )  = ~(o) + ~ ( ~ )  (o, ~ e s~). 

Pu t  ~ = (15)(24), ~ = (13524), p = ¢ o ~  = C13)C45). Then ,  as c m a p s  as 

y~ 4-~ - y 4 ,  y3 ~ - y 3 ,  we have ace ) = 0 by Propos i t ion  1. As for p,p m a p s  as 

x12 ~ x23,x45 ~ x45; hence pDp - l  - D = Int  a(p)  m a p s  as: 

x , 2 ~ p [ x z 3 , f ( x , 2 , x 2 s ) l  = [x,2,fCxz3,x,2)], x45--*0. 

Therefore ,  I n t a ( p )  coincides with Int  f (x ,2 ,x23)  on Y2 and Y4 (and hence also 

on Y3 = -Y2 - y4), and hence they coincide with each o ther  by Propos i t ion  l(i) .  

Therefore,  

a(p) = f (~ ,2 ,  ~2~). 

Therefore ,  a(p) = ace8 ) = ace ) + e .  a(6) = eaCS); hence aC~ ) = e - ' a (p )  = 

~ - ' f ( ~ 1 ~ , ~ 3 )  = f(~,~,~34).  Now since a ( ~ ) i s  a 1-cocycle and ~5 = 1, we have 

(1 + , + , ~  + , 3  + , ' ) f ( x , ~ , x 3 4 )  = 0. 

The  desired formula  (2.4.1) follows directly f rom this by using (2.2.1). II 
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3. More  on 3- and 5-cycle relat ions 
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3.1 In order to be able to use the 5-cycle relation (2.4.1) fully, we need to 

understand the algebraic structure of the subset {x12, x~a,. . . ,  xsl } of ~5. 

We shall prove: 

PROPOSITION 4: The Lie algebra gl 5 is generated by wi = xi,i+l (i E Z/5 ~, 

{1, 2 , . . . ,  5}), za2d the det]ning relations mnong the wi are: 

(3.1.1) 

(3.1.2) E [ w , ,  w,+,] = 0. 
i 

For ally Lie algebra £ over Q and ai E £ 

an admissible pentagon 

[wi, wj] = 0 it" i - j  ~ +1 (lnod5), 

(i E Z/5), we say that the ai's form 

a l  

a5 i ~ a 2  

a4 a3 

if (3.1.1) and (3.1.2) are satisfied for the ai in place of the wi. Note that if {ai} 

forms an admissible pentagon then so does {a-i  }. 

COROLLARY 1: There exists a Lie homomorphism ~: ~5--,£. such that ~(wi)  = 

a i  ( i  E Z / 5 )  it.and only i f  {ai}iez/5 forms as2 admissible pentagon. 

COROLLARY 2: It. f ( x ,  y) E ~3 4 satist]es the 5-cyclerelation (2.4.1), and {ai}iez/s  

forms an admissible pentagon, then 

E f(ai, ai+l)  :-- O. 
iez/5 

Proof of Proposition 4: 

(i): That ~3 5 is generated by the wi. This is clear by the formula (a special case 

of (1.1.1)) 

(3.1.3) xi,i+ 2 ~. x i + 3 , i +  4 --  x i , i +  1 --  Xi+l,i+ 2 

(i e z /5) .  
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(ii) That the wi's satisfy (3.1.1) and (3.1.2): (3.1.1) is obvious, and (3.1.2) 

follows directly from 

[X45 - -  XI2 --  X23, X51 --  X23 - -  X34] ~--- [XI3,X24] = O. 

(iii) That (3.1.1) and (3.1.2) are the fundamental relations: Since dim grl~3s = 5, 

we only need to show that the quadratic relations [xij,xkt] = 0 ({i , j}  f3 

{k,l} = ¢) follow from (3.1.1) and (3.1.2). When either i - j  = +1 or 

k - l = +1 ( rood 5), this relation follows directly from (3.1.1) (using (3.1.3) 

as definition of xij  = xji when i - j  = -4-2). When i - j  =- +2 and k - l  - rl:2, 

we may a s s u m e k = i + l ,  j = i + 2 ,  l = i + 3 ,  so tha t  

x i j  -~ 2~i+3,i+4 - x i , i + l  - X i + l , i + 2 ,  

X k l  -~- x i , i + 4  - -  X i + l , i + 2  - -  xi+2, i+3.  

In this case, [zO,zkl ] = 0 follows from (3.1.1) and (3.1.2). II 

3.2 Let f = f ( x , y )  E grmq34 (m > 1), £ be any Lie algebra over Q, and 

a,b,c E E,. 

PROPOSITION 5: 

(i) I f  c commutes with a and b, then f (a ,  b) = f (a  + c, b) = f (a ,  b + c); 

(ii) I f / sa t i s t i es  (2.2.2) (resp. (2.2.4)) and a + b+ c commutes with a,b,c, then 

[b, f (a ,  b)] + [c, f (a ,  c)] = 0 

(resp. f(a,  b) + f(b, c) + f(c, a) = 0). 

Proof'. 

(i) 
(ii) 

Clear, as m > 1. 

If a-/- b + c = 0, then this is obvious. The point is that we only need a + b + c 

to be commutative with a, b, c. To see this, let ~3" be the Lie algebra over 

Q generated by ~, r/, ~ with the defining relation: ~ + 7/+ ~ commutes with 

~,q,¢. Then ~I*/Q.(~ + q + ~)-%~I14, and f(~,rl)  + f(~/,() + f(~,~) and 

[q, f(~, 7/)] + [~, f(~, ~)] have 0 as their images on ~14. But since deg f > 1, 

they themselves must be 0. The rest is obvious. | 

We shall say that a, b, c form an admiss ib le  t r iangle  if a + b + c commutes 

with a, b, c. 
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3.3 PROPOSITION 6: LetA, B,C,a,b,c be six elements of a Lie algebra f.. over 

Q satisfying 
(i) [A, a] = [B, b] = IV, c] = 0, 

(ii) each of {A, B, c}, (A, b, C}, (a, B, C} is an admissible triangle. 
Then 

A 

(3.3.1) B + C + - ~ B  

A + ~ a  

is an admissible pentagon, and so is any Ss-transform of (3.3.1) obtained by 
interchanging the ordered pairs (A, a), (B, b), (C, c). 

Proof." Since the assumptions on A, B, C, a, b, c are S3-symmetric, it suffices to 

show that (3.3.1) is admissible. First it is clear that the elements corresponding 

to non-adjacent vertices commute with each other. Secondly, 

[B,a I + [a,A+B +c] + [ A + B + c , B +  C+a] 

+ [B + C+ a,A l + [A,B l 

= [a, c] + [A + c, C + a] + [C + a, A] = O. | 

PROPOSITION 7: Let A, B, C, a, b, c E f. satisfy, in addition to the conditions (i) 
and (ii) of Proposition 6, 
(iii) {a, b, c} is an admissible triangle. 

Then, for any f E grm~4 (m > 1) satisfying the 2,3,g-cycle relations (2.2.1), 
(2.2.4), and (2.4.1); 

(3.3.2) ](A, B) + ](B, C) + f(C, A) 

= f(A + b, B + a) + ](B + c, C + b) + f(C + a, A + c). 

Proof." Use the admissible pentagon 

B 

A + C + b ~ A  

A + B + c  b 

(3.3.3) 
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(obtained from (3.3.1) by the transposition {A, a}~{B, b}) and Proposition 5 (i) 

for A*-*B + c, C + b, and (2.2.1), to derive: 

(3.3.4) f ( A , B ) + f ( C + b , B + c )  = f ( A + C + b , B ) + f ( b , A + B + c ) + f ( A , b ) .  

By Proposition 5 (ii) applied to the admissible triangle {a, b, C}, and by (2.2.1), 

we obtain 

f(C, A) + f(A, b) = f(C, b). (3.3.5) 

Also, 
B c+A+b( c 

B + C + a  b 

is admissible; hence 

(3.3.6) f(B, C) + f(C, b) + f(b, B + C + a) 

+ f ( B + C  +a,C + A+b)+ f(C + A +b,B) = O. 

By adding both sides of (3.3.4),, ,(3.3.6) we obtain 

f(A, B) + f(B, C) + J:(C, A) 

=f(B + c, C + b) + f(b, A + B + c) + f (B  + C + a, b) 

+ f(A +C +b,B +C +a). 

But the sum of the second and the third terms on the RHS 

= f(b, A + c) + f ( C  + a, b) = f ( C  + a, A + c), 

because {b,A + c,G + a} is an admissible triangle (by (i),,~(iii)). Finally, as C 

commutes with A + b and B + a, C can be dropped off from the last term on the 

RHS. | 

3.4 The above Propositions 5, 6, 7 will be applied later to tile following case. 
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PROPOSITION 8: Let M be a non-empty subset of {1 ,2 , . . . ,n} ,  and i , j , k  be 

distinct indices from {1 , . . . , n}  not belonging to M. Put 

X i M  ~--- Z ;r im'  
m E M  

and de,  he XjM,XkM similarly. Then the system 

A = Z i M ,  B = Z j M ,  C ~-- X k M ,  
(3.4.1) a = X j k ,  b = Xk i ,  c -~ x i j  

in ~3, satisties the conditions O)(ii) of Proposition 6 and (iii) of Proposition 7. 

In particular, if f E grm~34 (m > 1) satisties the 2,3,5 cycle relations, then f 

satisties (3.3.2) and also 

(3.4.2) f (A ,  B) + f (B ,  a) + f(a, A + B + c) + f (A  + B + c, B + C + a) 

+ f ( B  + C  +a,A)  =0 .  

Proof." We only note that 

B + c = --XiM, ~ A + B =  Z ( X i m + X j m ) ,  
rnEM 

M' being the complement of M U {i} in {1, . . . ,n} .  These make it clear that 

B + c commutes with A = XiM and that c = xij commutes with A + B, and 

hence that {A, B, c} forms an admissible triangle. The rest is obvious. | 

4. Ex tendab i l l ty  

4.1 Now let m > 1 and f = f ( x ,y )  E grm~4 satisfy (2.2.1), (2.2.2), and 

(2.2.4)(in ~34) and (2.4.1) (in ~5): 

(2.2.1) 
(2.2.2) 
(2.2.4) 
(2.4.1) 

f (x ,  y) + f(y,  x) = O, 

[y, f (x ,  y)] + [z, f (x ,  z)] = O, 

f(x,  v) + f (v ,  z) + f ( z ,  = o, 

f(xi,i+l,Xi+l,i+2) = O. 
iCZl5 

Let D~ 4) be the derivation of ~4 defined in Proposition 2. Our goal is to show 

that for each n > 5, {D~ 4)} extends to an element {D~ ")} of :D,. (Recall that 
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(2.4.1) is a necessary condition for the extendability of {D (4)} to :D5 (§2.4).) We 

can write down the formula for D~ ") explicitly (see Theorem 2 and Proposition 9 

below), but to prove that this formula really gives a weU-defined derivation, etc., 

it is technically easier to construct first the corresponding 1-cocycle as(a ) with 

respect to the S.-action on grm~. ,  connected to D~ ") by the formula 

#D(y")# - I  - Dr")= Intas(#) (# 6 S.).  

We begin with this construction.  

For each i (1 < i < n - 1), call #i the t ransposi t ion #~ = (i, i + 1) E Sn. 

KEY LEMMA: 

that 

There exists a unique 1-cocycle S .  ~ g r " ~ .  (# ~ as(#)) such 

a s ( # , )  = a S ( a . - , )  = 0, 

as(o'i ) = f(Yi,Yi+l -- zi,i+l) (2 < i < n -- 2). 

Proof'. Since the #i 's  generate Sn, such a 1-cocycle is unique if exists at all. The  

existence relies heavily on the conditions (2.2.1), (2.2.4), and (2.4.1) satisfied by 

f ,  as we shall see. 

As Sn is generated by the #i 's  and the fundamental  relations are 

#i#i = #jai (1i - J [  > 1), 

#i#i+l# i = # i + l # i # i + l  (1 < i < n -- 2), 

2 1),  #i = 1  ( l < i < n -  

it suffices to prove the following (i)..-(iii): 

(i) as(# 0 is #j-invariant if li - J l  > 1, 

(ii) al(ai ) + oial(ai+, ) + aiai+lal(ai) 

=al(#i+l ) + #i+lal(#i ) + ai+l#ial(ai+l ) (1 < i < n - 2), 

(iii) (1 + ai)al(ai ) = 0 (1 < i < n - 1). 

Proof of(i): If j < i -  1 or j > i +  1, then aj  leaves yi, yi+l and xi,i+ 1 invariant; 

hence a i also leaves ay(ai) = f(yi ,  yi+l - -  xi,i+l) invariant.  

ProM o[ (ii): If we write j = i + 1, k = i + 2 and M = { 1 , 2 , . . .  , i  - 1}, then  
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(with the notation of Proposition 8), 

LHS of (ii) = f (y i ,  Yi+l - xi,i+x) + f(Yi + xi,i+l, yi+2 - xi,i+2) 

+ f(Yi+l - xi,i+l, Yi+2 -- Zi,i+2 -- Zi+l,i+2) 

=f(XiM,YjM) + f(XiM + Zij,T, kM + Xjk) + f(XjM,XkM) 

=f(A,  B) + f (A  + c, C + a) + f (B ,  C), 

and 

RHS of (ii) =f(yi+l, yi+2 - xi+l,i+2) + f(vi,  yi+2 - xi,i+2 - zi+l,i+2) 

+ f(yi  + xi,i+2, yi+l - xi,i+l + Xi+l,i+2) 

=f(XjM +Zij, XkM +Xki) "]- f(XiM, XkM) "]- f(XiM +Xki, ZjM +Xjk ) 

= f ( B  + c, C + b) + f (A,  C) + / ( A  + b, B + a). 

Therefore, they are equal by Propositions 7, 8. 

Proofof(iii): (l+o'i)a(o'i) = f(Yi,Yi+l --xi,i+x)+f(Yi+l --xi,i+l,Yi) = O. II 

4.2 Consider the subgroup $2 x Sn-2 C Sn generated by ai (1 < i < n - 1,i # 

2). Let f ,  af(a) be as in §4.1. Then 

al(a) • CI2 for a • 82 X Sn-2. 

Indeed, af(ai) • C12 for i # 2 (as yi,xi,i+l • C12 for i _> 31, and C12 is 

($2 x Sn_2)-stable. Therefore, if 1 _< i , j  <_ n (i ¢ j), and a • S,, is such that 

a(1) = i, a(2) = j ,  then al(a ) mod Cii is independent of the choice of a. Call 

this class fii. Our goal is to prove: 

THEOREM 2: The notation being as above, D(n): xij --* [xij,fij] (1 < i , j  < 

n, i # j )  defines a y-normalized special derivation of~3 n which extends the deriva- 

tion D 0) of ~4 and which satisfies 

aD~ 'Oa -1 - D(p) = Intal(a ) (a • Sn). 

First, we shall prove: 

PROPOSITION 9: If i < j ,  then 

j - 1  

(4.2.1/ fii  -- f (y i ,x i j )  + E 
i=i+1 

l-1 

k=l 
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Proof." 

(i) The case j = i + 1. We shall prove 

(4.2.2) fi,i+l = f(Yi,zi,i+l) (rood Ci,i+l) 

by induction on i. If i = 1, both sides are 0. Assume (4.2.2) for some i _< n - 2. 

Then, as 0rio'i+ 1 maps i, i + 1 to i + 1, i + 2 respectively, 

fi+l,i+2 -~ a(O'iOri+l ) + (O' iO' i+1)f i , i+l  

a(oi)  + aia(ai+l ) + (oricri+l)fi,i+l 

f (Yi ,  Yi+I --  x i , i + l  ) + f(Yi + Xi, i+I ,  Yi+2 - -  :/:i,i+2) 

+ f(Yi+l  -- Xi,i+l, Xi+1, i+2)  

(rood Ci+1,i+~). Therefore, 

fi+l,i+2 = f(A, B) + f(A + c, C + a) + f(B, a) 

= f(A,  B) + f (A  + B + c, B + C + a) + f (B,  a), 

where A = t i M  , B = Zi+l,M, C = ~.i+2,M, a ~ Xi+l , i+2 ,  b ~ xi,i+2, c ~ ggi,i+l, 

with M = { 1 , . . . , i -  1}. But 

A 

B + C + a  ~ ' ~ ~ B  

A + B + c  a 

is admissible (Propositions 6, 8); hence 

fi+l,~+2 - f (A + B + c, a) + f(A, B + C + a) 

= y(B + c, a) + y (a ,  B + C) 

=_ f(B + c, a) (rood Ci+l,i+2) 

= f(Yi+l, Xi+1, i+2)  ( r o o d  Ci+l,i+2), 

because A and B + C commutes with a = xi+l,i+2. This settles the case (i). 

(ii) The general ease j > i + 1. Induction on j .  Apply a t on (4.2.1) to get 

j-1 !-1 

f~,j+l - as (*~)  = S ( u .  x~, i+l )  + 

which gives 
j t-1 

fi,j+l -~ f (Yi ,  Xi,j+l) q- E f(Yl, E xk,j+l). 
I=i+1 k=l  

E f(Yz, E zk,j+,) (modCi , j+ l ) ,  
I=i+1 k=l  
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4.3 PROOF OF THEOREM 2 

(I) That D~"): xij ---} [xij,fit] defines a derivation of ~ . .  

suffices to check: 

To prove this, it 

(i) f i t  =-- f j i  (modCij), 
11 

(ii) ~-:~[;r.ij,fij] = 0 (1 < j  < n), 
i----1 

(iii) f i t - f k l  E C i j + C k t  if { i , j } N { k , l }  = 

(of. Proposition 3). 

Proofs of (.i), (ii), and (iii): 

(i) a I (* -1 )  = a1(*) + "a1(*, )  = ~ I ( ' )  for any ~ e Sn. 

(ii) For each j > 2, 

j - I  j - ]  

s ,  := ~ [ ~ , t ,  S,i] = ~[~,j,S(v,,~,~)] 
i=1 i----1 

J-] t - ]  I-1 

i----1 /= i+1  k----I 

By changing the order of summation in the second term on the RHS, we obtain 

j - l  1-1 1-1 

st = ~{[~,t,f(v,,x,t)] + [ ~  ~kt,/(y,, ~ ~ t ) ] } -  
1=2 k = l  k = l  

I -1  But since xtj, Yt and )"~k=l xki form an admissible triangle, each summand in the 

above expression for S t must be 0 by Proposition 5 (ii). Therefore, Sj = O. 

In particular, for j = n, 

v#n 

Now let j be any index(1 _<j _< n) a n d a  E Sn be such that a(n) = j .  Then 

af,,n =- f~j - af(a)  (modC~o), where p = a(v), and Ej ,# j  x,,j = 0; hence 

~ [ x . t , : , t ]  = 0 .  
t,#i 

This settles (ii). 
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(iii) It suffices to prove this for one choice of a quadruple {i , j ,  k, l}. This is 

because Sn acts transitively on such quadruples and 

fui,~,/= afii  + al(a) rood C~,i:,j, 

f¢~,,,t = a A t  + al(a) mod C~k,~t. 

Choose { i , j }  = {1,2}, {k, l}  = {n - 1,n}. Then f12 = 0 (mod C12) (obvious), 

and fn- l ,n  =- 0 (rood Cn-l,n) by Proposition 9 (because yn-1 = - zn - l , n ) .  

Therefore, fl,2 - fn- l ,n  E C12 + Cn-l,n. 
Therefore, D(f n) defines a derivation of ~n ,  which is obviously special. Write 

D = D(7 ). 

(II) Since we have shown above that Sj = O, we have D(yj) = 0 (2 _< j _< n - l ) .  

Therefore, D is y-normalized. 

(III) For each k,l  (1 _< k,l  _< n), k ~k 1, choose rkt E Sn which map 1,2 to 

k, l respectively. Then D(xkt) = [xkt, al(rkt)]. For each i (1 < i < n - 

1), consider the derivation aiDa~ -1 - D of ~n.  Then this maps xkt to 

[xkt, ai(af(ai'lvkz)) - a/('rk/)] = [xkt, -ay(ai)] = [a/(ai), xkt], for any k, 1. 

Therefore, aiDa'~ 1 - D = Int al(ai ). 

(IV) Finally, since D(z23) = [z23, t23] = [z23, f(y2, x2a)] = [x23, f(xl2,  x23)], and 

D(Xl2) = 0, D extends D (4). II 

4.4 From Theorem 2, the "if" implication of Theorem 1, as well as the Main 

Theorem (§1.2), follow immediately. 

Remark: Drinfeld shows, in a slightly different language (plane braids on 4 
strings instead of sphere braids on 5 strings) that (2.2.2) follows from (2.2.1), 
(2.2.4), and (2.4.1) (see [1] §5 (Proposition 5.7)). 
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