ON THE STABLE DERIVATION ALGEBRA ASSOCIATED WITH SOME BRAID GROUPS

BY

YASUTAKA IHARA

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

ABSTRACT

We shall prove some stability property of the graded Lie algebra \mathcal{D}_n of certain derivations associated with pure sphere braid group on n strings; in fact, that $\mathcal{D}_n \simeq \mathcal{D}_5$ for $n \geq 6$. These Lie algebras \mathcal{D}_n are connected with some big *l*-adic Galois representations, and the stability property is related to some conjecture of Grothendieck.

Introduction

Let $\mathfrak{P}_n(n \geq 4)$ be the graded Lie algebra over Q associated with the lower central series of the pure sphere braid group on n strings, and \mathcal{D}_n be the graded Lie algebra over Q consisting of all " S_n -invariant special" outer derivations of \mathfrak{P}_n (see §1 below). This algebra \mathcal{D}_n has drawn our attention in connection with the action of the Galois group Gal(\bar{Q}/Q) on the pro-*l* fundamental group of ${\bf P}^1$ – {0, 1, ∞ }. A certain basic Galois Lie algebra ${\bf g}^{(l)}$ associated with this action is *contained in* $\mathcal{D}_n \otimes \mathbf{Q}_l$ for each $n \geq 4$ and each prime *l* ([5]§5). The structure of \mathfrak{P}_n was determined by T. Kohno [8] (see §1.1 below), but as for \mathcal{D}_n , we know much less. There are natural sequences of projections

$$
\rightarrow \mathfrak{P}_n \rightarrow \cdots \rightarrow \mathfrak{P}_5 \rightarrow \mathfrak{P}_4,
$$

$$
\rightarrow \mathcal{D}_n \rightarrow \cdots \rightarrow \mathcal{D}_5 \rightarrow \mathcal{D}_4,
$$

in which the arrows $\mathfrak{P}_n \rightarrow \mathfrak{P}_{n-1}$ are surjective (with big kernels), while $\mathcal{D}_n \rightarrow \mathcal{D}_{n-1}$ are injective [4] (cf. [7] for some generalizations), both for $n \geq 5$. The main

Received December 15, 1991

purpose of this paper is to prove that $\mathcal{D}_n \rightarrow \mathcal{D}_{n-1}$ is bijective for $n \geq 6$. (This gives an affirmative answer to the question " $\mathcal{D}_5 = \mathcal{D}_{\infty}$?" raised in [5] (Q5.3.4(i)).) Thus,

$$
\cdots \overset{\sim}{\rightarrow} \mathcal{D}_n \overset{\sim}{\rightarrow} \cdots \overset{\sim}{\rightarrow} \mathcal{D}_5 \hookrightarrow \mathcal{D}_4
$$

(and $\mathcal{D}_5 \nrightarrow \mathcal{D}_4$; see §1.2). It is an open question whether $g^{(l)} \simeq \mathcal{D}_5 \otimes \mathbf{Q}_l$ and (hence) \mathcal{D}_5 gives a common **Q**-structure for the *l*-adic Lie algebras $g^{(l)}$. This stability property may be regarded as a graded Lie algebra version, in the case of genus 0, of a more general property of the "Teichmfiller Lego" *predicted* by Grothendieck $[2]$ (see also $[5]$ §3.3, §5.3; $[1]$ §4, especially a question raised a few lines after the formula (4.13)).

The main results are: Main Theorem (§1.2), Theorem 1 (§2.4), Theorem 2 and Proposition 9 (§4.2).

About the proofs. Since the injectivity of $\mathcal{D}_n \rightarrow \mathcal{D}_{n-1}(n \geq 5)$ was already established [4], the question is the extendability of each element of \mathcal{D}_5 to that of \mathcal{D}_n ($n \geq 6$). The author obtained the first proof of the extendability by using the action of the Grothendieck-Teichmüller group $GT(k)$ on $B_n(k)$ defined in Drinfeld [1]. Here, k is some field of characteristic $0, B_n$ is the plane braid group on *n* strings, and $B_n(k)$ is a certain "k-nilpotent completion" associated with B_n . The graded Lie algebra of $\operatorname{GT}_1(k) (\subset \operatorname{GT}(k))$ is isomorphic to $\mathcal{D}_5 \otimes k$ (compare our Theorem 1 with $[1]$ $\S5$, 6), and it can be checked that the above action induces an "n-compatible" system of Lie algebra homomorphisms $\mathcal{D}_5 \rightarrow \mathcal{D}_n$ ($n \geq 5$). This leads directly to the extendability. But in this proof, verifications of some technical points are fairly involved and lengthy. We shall therefore choose another way and give a proof which lies within the framework of graded Lie algebras.

1. Definitions and the statement of the main result

1.1 The graded Lie algebra \mathfrak{P}_n over Q $(n \geq 4)$ has the following presentation:

Generators
$$
x_{ij}
$$
 $(1 \le i, j \le n)$;
\nRelationship (i) $x_{ii} = 0$ $(1 \le i \le n)$, $x_{ij} = x_{ji}$ $(1 \le i, j \le n)$;
\n(ii)
$$
\sum_{j=1}^{n} x_{ij} = 0
$$
 $(1 \le i \le n)$;
\n(iii)
$$
[x_{ij}, x_{kl}] = 0
$$
 if $\{i, j\} \cap \{k, l\} = \phi$.
\nThe grading $\deg(x_{ij}) = 1$ $(1 \le i, j \le n)$.

We denote by $gr^m \mathfrak{P}_n$ the homogeneous part of \mathfrak{P}_n of degree m $(m \ge 1)$. It is easy to see that $x_{ij} + x_{jk} + x_{ki}$ commutes with x_{ij}, x_{jk}, x_{ki} for any indices i, j, k , and that

$$
(1.1.1) \t\t\t x_{ij} = \sum' x_{kl},
$$

where the summation \sum' is over all indices k, l with $k < l$ and $\{k, l\} \cap \{i, j\} = \phi$.

The symmetric group S_n acts on \mathfrak{P}_n via $x_{ij} \to x_{\sigma i, \sigma j}$ ($\sigma \in S_n$), inducing a linear action on $\operatorname{gr}^m\mathfrak{P}_n$ for each m.

When $n = 4$, one has, by (1.1.1), $x_{12} = x_{34} (= x)$, $x_{23} = x_{14} (= y)$, $x_{13} = x_{14}$ $x_{24}(:= z)$, with $x + y + z = 0$, and \mathfrak{P}_4 is a free Lie algebra on x, y . The group S_4 acts on \mathfrak{P}_4 through its quotient $\simeq S_3$ as substitutions of x, y, z .

When $n \geq 5$, \mathfrak{P}_n is a successive extension of free graded Lie algebras of ranks 2, 3,..., $n-2$. To see this, let N_i $(1 \leq i \leq n)$ denote the Lie subalgebra of \mathfrak{P}_n generated by $x_{i1},...,x_{in}$. Then ([4]; Prop 3.2.1, its proof and Prop 3.3.1) N_i is an *ideal*, which is free of rank $n - 2$, being generated by any $n - 2$ members among the x_{ij} $(1 \leq j \leq n, j \neq i)$. Moreover, $\mathfrak{P}_n/N_i \simeq \mathfrak{P}_{n-1}$. Therefore, \mathfrak{P}_n is a successive extension of free graded Lie algebras (of ranks $2, 3, \ldots, n - 2$). In particular, it has trivial center. For each $i, j \ (1 \leq i, j \leq n)$, $i \neq j$, let C_{ij} denote the centralizer of x_{ij} in \mathfrak{P}_n . Then *(loc. cit)* C_{ij} is generated by x_{kl} for ${k, l} \cap {i, j} = \phi$, and

(1.1.2)
$$
N_i + C_{ij} = \mathfrak{P}_n, \quad N_i \cap C_{ij} = \mathbf{Q} x_{ij} \ (\subset \mathrm{gr}^1 \mathfrak{P}_n).
$$

In particular,

(1.1.3) *grm~3,* = grmNi @ *grmCij* (m > 1).

This decomposition will be often used later.

1.2 A derivation of \mathfrak{P}_n is a Q-linear endomorphism D of \mathfrak{P}_n such that

$$
D([y, y']) = [Dy, y'] + [y, Dy'] \quad (y, y' \in \mathfrak{P}_n).
$$

It is called special if for each *i,j* $(1 \le i, j \le n)$ there exists some $t_{ij} \in \mathfrak{P}_n$ such that $D(x_{ij}) = [t_{ij}, x_{ij}]$. Special derivations of \mathfrak{P}_n form a graded Lie algebra; the degree m part consists of those D with $t_{ij} \in \text{gr}^m \mathfrak{P}_n$ (all *i,j*), and $[D, D'] :=$ $D \circ D' - D' \circ D$. This algebra contains the inner derivations as homogeneous ideal, and the quotient will be called the (graded Lie) algebra of special outer derivations. If D is a derivation of \mathfrak{P}_n and $\sigma \in S_n$, then $\sigma \circ D \circ \sigma^{-1}$ is again a derivation. This $D \to \sigma \circ D \circ \sigma^{-1}$ induces an S_n -action on the algebra of special outer derivations. We define \mathcal{D}_n to be the graded Lie algebra over Q consisting of all S_n -invariant special outer derivations of \mathfrak{P}_n .

Now let $n \geq 5$. Then each special derivation D of \mathfrak{P}_n leaves the kernel $N_n =$ $\langle x_{n1},\cdots,x_{n,n-1}\rangle$ of the projection $\mathfrak{P}_n\to\mathfrak{P}_{n-1}$ defined by $x_{ij}\to x_{ij}$ $(1\leq i,j\leq n)$ $n-1$) stable, and hence D induces a special derivation \overline{D} of \mathfrak{P}_{n-1} . This $D \to \overline{D}$ induces a homomorphism ψ_n : $\mathcal{D}_n \to \mathcal{D}_{n-1}$. We have shown [4] that ψ_n is *injective* $(n \geq 5)$. The main goal of this note is to give a proof of:

MAIN THEOREM: ψ_n is bijective for $n \geq 6$.

Thus, ψ_n induces:

$$
\stackrel{\sim}{\to} \mathcal{D}_n \stackrel{\sim}{\to} \cdots \stackrel{\sim}{\to} \mathcal{D}_5 \hookrightarrow \mathcal{D}_4.
$$

Ihara-Terada and Drinfeld have independently verified that dim gr⁷ $D_5 = 1$ < $2 = \dim \mathrm{gr}^7 \mathcal{D}_4$ ([1][6]).

Remark 1: It is easy to see that $gr^1\mathcal{D}_4 = (0)$. Therefore, $gr^1\mathcal{D}_n = (0)$ for all $n \geq 4$, by the injectivity of ψ_n . So, in the following study of $gr^m\mathcal{D}_n$, we can restrict ourselves to the case $m > 1$.

2. The y-normalization; \mathcal{D}_4 and \mathcal{D}_5

2.1 For each $n \geq 4$, we shall make use of the following set of elements $y_i = y_i^{(n)}$ of \mathfrak{P}_n ;

(2.1.1)
$$
y_i = \sum_{j=1}^{i-1} x_{ij} = -\sum_{j=i+1}^{n} x_{ij} \quad (2 \le i \le n-1).
$$

Then, clearly, y_2,\ldots,y_{n-1} are mutually commutative, $y_1 = x_{12}, y_{n-1} = -x_{n-1,n}$, and

$$
(2.1.2) \t\t y_2 + \cdots + y_{n-1} = 0.
$$

PROPOSITION 1:

- (i) If $z \in \text{gr}^m \mathfrak{P}_n$ $(m > 1)$ commutes with all y_i $(2 \le i \le n 1)$, then $z = 0$;
- (ii) *Each class of special derivations modulo inner derivations of* \mathfrak{P}_n *of degree m > 1 contains* a unique *derivation D such that*

$$
(2.1.3) \t D(y_2) = \cdots = D(y_{n-1}) = 0.
$$

Proof:

(i) Induction on $n \geq 4$. For $n = 4$, \mathfrak{P}_4 is free on $x(= x_{12})$, $y(= x_{23})$, and $y_2 = -y_3 = x$. But the centralizer of x in \mathfrak{P}_4 is $\mathbf{Q}_x \subset \text{gr}^1\mathfrak{P}_4$; hence this is valid for $n = 4$. Now let $n \ge 5$ and assume that (i) is valid for $n - 1$. Let $z \in \text{gr}^m \mathfrak{P}_n$ $(m > 1)$ commute with $y_i = y_i^{(n)}$ $(2 \le i \le n - 1)$. Then, since the projection of $y_i^{(n)}$ on $\mathfrak{P}_{n-1} = \mathfrak{P}_n/N_n$ is $y_i^{(n-1)}$ $(2 \le i \le n-2)$, the induction assumption implies that the projection of z on \mathfrak{P}_{n-1} must vanish; hence $z \in N_n$. But since *z* commutes also with $y_{n-1}^{(n)} = -x_{n-1,n}$, and N_n is free on $x_{2n}, \ldots, x_{n-1,n}$ (and moreover deg $z > 1$, z must be 0.

(ii) The uniqueness is obvious by (i). As for the existence, we shall not need the assumption $m > 1$. We proceed by induction. When $n = 4$, (ii) is obvious, as $y_2 = -y_3 = x_{12}$.

Now let $n \geq 5$ and assume that (ii) is valid for $n-1$. Then, by using the projection $\mathfrak{P}_n \to \mathfrak{P}_{n-1}$ and the induction assumption, we see easily that a given class (modulo inner derivations) contains such a derivation D' that $D'(y_i) \in N_n$ $(2 \leq i \leq n-2)$. As D' is special and $y_{n-1} = -x_{n-1,n}$, $D'(y_{n-1}) = [t', y_{n-1}]$ with some $t' \in \mathfrak{P}_n$. As $\mathfrak{P}_n = C_{n-1,n} + N_n$, we may assume $t' \in N_n$. Put $D = D' - \text{Int}(t') (\text{Int}(t'))$: the inner derivation $* \mapsto [t', *])$. Then $D(y_{n-1}) = 0$, and as $t' \in N_n$ and N_n is an ideal, $D(y_i) \in N_n$ $(2 \le i \le n-2)$. But since $[y_i, y_{n-1}] = 0$ and $D(y_{n-1}) = 0$, we have $[D(y_i), y_{n-1}] = 0$. Therefore, $D(y_i) \in C_{n-1,n} \cap N_n$. As deg $D(y_i) > \deg y_i = 1$, we have $D(y_i) = 0$ also for $2 \le i \le n-2$. Therefore, D satisfies the required property.

A special derivation D of \mathfrak{P}_n will be called y-normalized if it satisfies (2.1.3). By Proposition 1 (and Remark 1), each element of \mathcal{D}_n is represented by a unique y-normalized special derivation D. The corresponding element of \mathcal{D}_n will be denoted by $\{D\}$. Note that if D, D' are y-normalized, then so is $[D, D']$. Thus, \mathcal{D}_n is isomorphic to the algebra of all those y-normalized special derivations of \mathfrak{P}_n that are S_n -invariant modulo inner derivations.

As a representative modulo inner derivations for each element of \mathcal{D}_n , we may also choose an S_n -invariant derivation (which is unique only up to inner derivations w.r.t. S_n -invariant elements of \mathfrak{P}_n). But it seems that the y-normalized representative is more useful for our present purpose.

2.2 THE CASE $n=4$. Recall that \mathfrak{P}_4 is free on $x = x_{12} = x_{34}$ and $y = x_{23} = x_{34}$ x_{14} , and $x + y + z = 0$ for $z = x_{13} = x_{24}$.

PROPOSITION 2:

- (i) $gr^1D_4 = (0)$.
- (ii) For $m > 1$, let $f = f(x, y)$ run over all elements of $gr^m\mathfrak{P}_4$ satisfying

(2.2.1)
$$
f(x,y) + f(y,x) = 0,
$$

$$
(2.2.2) \t\t [y, f(x,y)] + [z, f(x,z)] = 0,
$$

and for each such f, call $D_f = D_f^{(4)}$ the derivation of \mathfrak{P}_4 defined by

(2.2.3)
$$
D_f(x) = 0, \quad D_f(y) = [y, f(x, y)].
$$

Then D_f is a y-normalized special derivation of \mathfrak{P}_4 of degree m which is S_4 -invariant modulo inner derivations, and $f \rightarrow \{D_f\}$ gives a Q-module *isomorphism between the space of all* $f \in \text{gr}^m\mathfrak{P}_4$ *satisfying (2.2.1) and* $(2.2.2)$ and the space $\text{gr}^m \mathcal{D}_4$.

(iii) From $(2.2.1)$ and $(2.2.2)$ follows the 3-cycle relation in \mathfrak{P}_4 :

(2.2.4)
$$
f(x,y) + f(y,z) + f(z,x) = 0,
$$

(iv)
$$
[D_f, D_{f'}] = D_{f''}
$$
, with $f'' = [f, f'] + D_f(f') - D_{f'}(f)$.

Proof: As these are essentially known $([1], [3], [4])$, we shall only sketch the proof. Let $m > 1$ and $\{D\} \in \text{gr}^m\mathcal{D}_4$, with *D*: *y*-normalized. Then $D(x) = 0$, $D(y) = [y, f]$ and $D(z) = [z, g]$, with some $f, g \in \text{gr}^m\mathfrak{P}_4$. As $x + y + z = 0$, we h ave

$$
(2.2.5) \t\t [y,f] + [z,g] = 0.
$$

Now S_4 acts on \mathfrak{P}_4 via its quotient $\simeq S_3$ as substitutions of x, y, z , and D is S4-invariant modulo inner derivations. Hence

$$
\sigma D \sigma^{-1} - D = \text{Int } a(\sigma)
$$

with some $a(\sigma) \in \text{gr}^m\mathfrak{P}_4$ for each substitution σ of x, y, z .

First, take $\sigma: x \to x$, $y \leftrightarrow z$. Then the derivation (2.2.6) applied to x gives $[a(\sigma), x] = 0$; hence $a(\sigma) = 0$ (as $m > 1$). Therefore, (2.2.6) applied to y gives $[y, \sigma g - f] = 0$; hence $g = \sigma(f)$. This, together with (2.2.5), gives (2.2.2). Now take $\sigma: x \leftrightarrow y$, $z \rightarrow z$. Then (2.2.6) gives $a(\sigma) = f(x, y) = -f(y, x)$; hence (2.2.1). Conversely, if f satisfies (2.2.1) (2.2.2), D_f is obviously y-normalized, special, and S_4 -invariant modulo inner derivations. This settles (ii).

(iii) From (2.2.2), we obtain by changing variables:

$$
(2.2.7) \t\t\t [z, f(y, z)] + [x, f(y, x)] = 0.
$$

By substracting $(2.2.7)$ from $(2.2.2)$ and using $(2.2.1)$, we obtain

$$
[x + y, f(x, y) + f(y, z) + f(z, x)] = 0;
$$

hence (2.2.4).

(i) and (iv): Straightforward.

2.3 Before proceeding to the case $n = 5$, we need:

PROPOSITION 3: If $1 \le i, j, k, l \le n, \{i, j\} \cap \{k, l\} = \phi$ and $z \in \mathfrak{P}_n$, then $[x_{ij}[x_{kl},z]] = 0$ holds if and only if $z \in C_{ij} + C_{kl}$.

Proof: First, we note that $[x_{ij},x_{kl}]=0$ and hence $[x_{ij}[x_{kl},z]] = [x_{kl}[x_{ij},z]].$ Now the "if" implication is obvious. To prove the other, assume $[x_{ij}[x_{kl}, z]] = 0$ and decompose z as $z = n_i + c_{ij}$ ($n_i \in N_i$, $c_{ij} \in C_{ij}$). By the assumption on $z, [x_{kl}, z] \in C_{ij}$. Also, clearly, $[x_{kl}, c_{ij}] \in C_{ij}$. Therefore, $[x_{kl}, n_i] \in C_{ij}$. But N_i being an ideal, $[x_{kl}, n_i] \in N_i$. Therefore, $[x_{kl}, n_i] = 0$ by (1.1.3). Therefore, $n_i \in C_{kl}$. Therefore, $z = n_i + c_{ij} \in C_{kl} + C_{ij}$.

2.4 THE CASE $n = 5$. In this section, we shall prove the "only if" implication of the following

THEOREM 1: * Let $f \in \text{gr}^m\mathfrak{P}_4$ and $\{D_f^{(4)}\} \in \text{gr}^m\mathcal{D}_4$ be as in Proposition 2. *Then* $\{D_f^{(4)}\}$ *belongs to the image of* $\psi_5: \mathcal{D}_5 \to \mathcal{D}_4$ *if and only if f satisfies the following 5-cycle relation in* \mathfrak{P}_5 :

$$
(2.4.1) \quad f(x_{12},x_{23}) + f(x_{34},x_{45}) + f(x_{51},x_{12}) + f(x_{23},x_{34}) + f(x_{45},x_{51}) = 0.
$$

Here, in general, for any Lie algebra $\mathcal L$ over **Q** and $a, b \in \mathcal L$, $f(a, b)$ denotes the image of f under the Lie homomorphism $\mathfrak{P}_4 \to \mathcal{L}$ defined by $x \to a, y \to b$.

The "if" implication in Theorem 1 will be proved in §4.

^{*} This theorem was obtained in 1988 and was used by Terada to check that some element of $gr^7\mathcal{D}_4$ is not extendable to $gr^7\mathcal{D}_5$.

Proof of the "only if" implication: Suppose that there exists $\{D\} \in \text{gr}^m\mathcal{D}_5$ $(m > 1)$, with D: y-normalized, such that $\psi_5\{D\} = \{D_f^{(4)}\}$. As $y_2 = x_{12}$, $y_3 = x_{13} + x_{23}$ and $y_4 = -x_{45}$, we have

$$
D(x_{12}) = D(x_{13} + x_{23}) = D(x_{45}) = 0.
$$

[Claim]
$$
D(x_{23}) = [x_{23}, f(x_{12}, x_{23})].
$$

Indeed, put $D(x_{23}) = [x_{23}, t_{23}], t_{23} \in \text{gr}^m \mathfrak{P}_5$. Since $[x_{23}, x_{45}] = 0$ and $D(x_{45}) =$ 0, $[D(x_{23}), x_{45}] = 0$; hence $t_{23} \in C_{23} + C_{45}$, by Proposition 3. Thus, we may assume $t_{23} \in C_{45} = \langle x_{12}, x_{23}, x_{13} \rangle$ (the Lie subalgebra of \mathfrak{P}_5 generated by x_{12}, x_{23}, x_{13}). As $m > 1$ and $x_{12} + x_{23} + x_{13} = x_{45}$ is central in C_{45} , $t_{23} \in \langle x_{12}, x_{23} \rangle$. But since $\{D\}$ extends $\{D_f^{(4)}\}$, D must extend $D_f^{(4)}$, and hence the image of t_{23} on $\mathfrak{P}_4 \simeq \mathfrak{P}_5/N_5$ must be f. Therefore, $t_{23} = f(x_{12}, x_{23})$, whence the claim.

Now for each $\sigma \in S_5$,

$$
\sigma D \sigma^{-1} - D = \text{Int } a(\sigma)
$$

with a unique $a(\sigma) \in \text{gr}^m\mathfrak{P}_5$, and $\sigma \mapsto a(\sigma)$ is a 1-cocyle;

$$
a(\sigma\tau)=a(\sigma)+\sigma a(\tau)\quad(\sigma,\tau\in S_5).
$$

Put $\varepsilon = (15)(24), \delta = (13524), \rho = \varepsilon \circ \delta = (13)(45)$. Then, as ε maps as $y_2 \leftrightarrow -y_4, y_3 \leftrightarrow -y_3$, we have $a(\varepsilon) = 0$ by Proposition 1. As for ρ, ρ maps as $x_{12} \leftrightarrow x_{23}, x_{45} \rightarrow x_{45}$; hence $\rho D \rho^{-1} - D = \text{Int } a(\rho)$ maps as:

$$
x_{12} \rightarrow \rho[x_{23}, f(x_{12}, x_{23})] = [x_{12}, f(x_{23}, x_{12})], \quad x_{45} \rightarrow 0.
$$

Therefore, Int $a(\rho)$ coincides with Int $f(x_{12}, x_{23})$ on y_2 and y_4 (and hence also on $y_3 = -y_2 - y_4$), and hence they coincide with each other by Proposition 1(i). Therefore,

$$
a(\rho)=f(x_{12},x_{23}).
$$

Therefore, $a(\rho) = a(\varepsilon\delta) = a(\varepsilon) + \varepsilon \cdot a(\delta) = \varepsilon a(\delta)$; hence $a(\delta) = \varepsilon^{-1} a(\rho) =$ $\varepsilon^{-1} f(x_{12}, x_{23}) = f(x_{45}, x_{34}).$ Now since $a(\sigma)$ is a 1-cocycle and $\delta^5 = 1$, we have

$$
(1+\delta+\delta^2+\delta^3+\delta^4)f(x_{45},x_{34})=0.
$$

The desired formula $(2.4.1)$ follows directly from this by using $(2.2.1)$.

3. More on 3- and 5-cycle relations

3.1 In order to be able to use the 5-cycle relation (2.4.1) fully, we need to understand the algebraic structure of the subset ${x_{12}, x_{23}, \ldots, x_{51}}$ of \mathfrak{P}_5 .

We shall prove:

PROPOSITION 4: *The Lie algebra* \mathfrak{P}_5 *is generated by* $w_i = x_{i,i+1}$ *(i* $\in \mathbb{Z}/5 \approx$ *)* $\{1, 2, \ldots, 5\}$, and the defining relations among the w_i are:

(3.1.1) $[w_i, w_j] = 0$ if $i - j \not\equiv \pm 1 \pmod{5}$,

(3.1.2)
$$
\sum_i [w_i, w_{i+1}] = 0.
$$

For any Lie algebra $\mathcal L$ over **Q** and $a_i \in \mathcal L$ ($i \in \mathbf Z/5$), we say that the a_i 's form *an admissible pentagon*

if (3.1.1) and (3.1.2) are satisfied for the a_i in place of the w_i . Note that if $\{a_i\}$ forms an admissible pentagon then so does $\{a_{-i}\}.$

COROLLARY 1: *There exists a Lie homomorphism* $\varphi: \mathfrak{P}_5 \to \mathcal{L}$ such that $\varphi(w_i) =$ a_i ($i \in \mathbb{Z}/5$) if and only if $\{a_i\}_{i \in \mathbb{Z}/5}$ forms an admissible pentagon.

COROLLARY 2: *If* $f(x, y) \in \mathfrak{P}_4$ satisfies the 5-cycle relation (2.4.1), and $\{a_i\}_{i\in \mathbb{Z}/5}$ *forms an admissible pentagon, then*

$$
\sum_{i\in \mathbf{Z}/5} f(a_i, a_{i+1}) = 0.
$$

Proof of Proposition 4:

(i): *That* \mathfrak{P}_5 *is generated by the wi.* This is clear by the formula (a special case of (1.1.1))

$$
(3.1.3) \t\t x_{i,i+2} = x_{i+3,i+4} - x_{i,i+1} - x_{i+1,i+2}
$$

 $(i \in \mathbb{Z}/5).$

(ii) *That the w_i's satisfy* $(3.1.1)$ and $(3.1.2)$: $(3.1.1)$ is obvious, and $(3.1.2)$ follows directly from

$$
[x_{45}-x_{12}-x_{23}, x_{51}-x_{23}-x_{34}]=[x_{13}, x_{24}]=0.
$$

(iii) *That* (3.1.1) and (3.1.2) are the fundamental relations: Since dim $gr^1\mathfrak{P}_5 = 5$, we only need to show that the *quadratic* relations $[x_{ij}, x_{kl}] = 0$ ($\{i, j\} \cap$ ${k, l} = \phi$ follow from (3.1.1) and (3.1.2). When either $i - j \equiv \pm 1$ or $k-l \equiv \pm 1 \pmod{5}$, this relation follows directly from $(3.1.1)$ (using $(3.1.3)$) as definition of $x_{ij} = x_{ji}$ when $i-j \equiv \pm 2$). When $i-j \equiv \pm 2$ and $k-l \equiv \pm 2$, we may assume $k=i+1$, $j=i+2$, $l=i+3$, so that

$$
x_{ij} = x_{i+3,i+4} - x_{i,i+1} - x_{i+1,i+2},
$$

\n
$$
x_{kl} = x_{i,i+4} - x_{i+1,i+2} - x_{i+2,i+3}.
$$

In this case, $[x_{ij}, x_{kl}] = 0$ follows from (3.1.1) and (3.1.2).

3.2 Let $f = f(x, y) \in \text{gr}^m \mathfrak{P}_4$ $(m > 1)$, $\mathcal L$ be any Lie algebra over Q, and $a,b,c\in\mathcal{L}.$

PROPOSITION 5:

- (i) If c commutes with a and b, then $f(a, b) = f(a+c, b) = f(a, b+c);$
- (ii) If f satisfies $(2.2.2)$ (resp. $(2.2.4)$) and $a + b + c$ commutes with a, b, c, then

$$
[b, f(a, b)] + [c, f(a, c)] = 0
$$

(resp. $f(a, b) + f(b, c) + f(c, a) = 0$).

Proof'.

- (i) Clear, as $m > 1$.
- (ii) If $a+b+c=0$, then this is obvious. The point is that we only need $a+b+c$ to be commutative with a, b, c . To see this, let \mathfrak{P}^* be the Lie algebra over Q generated by ξ, η, ζ with the defining relation: $\xi + \eta + \zeta$ *commutes with* ξ, η, ζ . Then $\mathfrak{P}^*/\mathbf{Q}\cdot(\xi + \eta + \zeta) \to \mathfrak{P}_4$, and $f(\xi,\eta) + f(\eta,\zeta) + f(\zeta,\xi)$ and $[\eta, f(\xi, \eta)] + [\zeta, f(\xi, \zeta)]$ have 0 as their images on \mathfrak{P}_4 . But since deg $f > 1$, they themselves must be 0. The rest is obvious.

We shall say that a, b, c form an admissible triangle if $a + b + c$ commutes with a, b, c .

3.3 PROPOSITION 6: Let A, B, C, a, b, c be six elements of a Lie algebra $\mathcal L$ over *Q satisfying*

- (i) $[A, a] = [B, b] = [C, c] = 0$,
- (ii) each of $\{A, B, c\}, \{A, b, C\}, \{a, B, C\}$ is an admissible triangle.

Then

is an admissible pentagon, and so is any S_3 -transform of (3.3.1) obtained by interchanging the ordered pairs $(A, a), (B, b), (C, c)$.

Proof: Since the assumptions on A, B, C, a, b, c are S₃-symmetric, it suffices to show that (3.3.1) is admissible. First it is clear that the elements corresponding to non-adjacent vertices commute with each other. Secondly,

$$
[B, a] + [a, A + B + c] + [A + B + c, B + C + a]
$$

+
$$
[B + C + a, A] + [A, B]
$$

=
$$
[a, c] + [A + c, C + a] + [C + a, A] = 0.
$$

PROPOSITION 7: Let $A, B, C, a, b, c \in \mathcal{L}$ satisfy, in addition to the conditions (i) *and (ii)* of *Proposition 6,*

(iii) {a, b, c} *is an admissible triangle.*

Then, for any $f \in \text{gr}^m\mathfrak{P}_4$ ($m > 1$) satisfying the 2,3,5-cycle relations (2.2.1), *(2.2.4), and (2.4.1);*

$$
(3.3.2) \quad f(A,B) + f(B,C) + f(C,A)
$$

= $f(A + b, B + a) + f(B + c, C + b) + f(C + a, A + c).$

Proof: Use the admissible pentagon

(obtained from (3.3.1) by the transposition $\{A, a\} \leftrightarrow \{B, b\}$) and Proposition 5 (i) for $A \leftrightarrow B + c$, $C + b$, and (2.2.1), to derive:

$$
(3.3.4) f(A, B) + f(C + b, B + c) = f(A + C + b, B) + f(b, A + B + c) + f(A, b).
$$

By Proposition 5 (ii) applied to the admissible triangle $\{A, b, C\}$, and by (2.2.1), we obtain

$$
(3.3.5) \t f(C, A) + f(A, b) = f(C, b).
$$

Also,

is admissible; hence

(3.3.6)
$$
f(B,C) + f(C,b) + f(b,B+C+a) + f(B+C+a,C+A+b) + f(C+A+b,B) = 0.
$$

By adding both sides of $(3.3.4) \sim (3.3.6)$ we obtain

$$
f(A, B) + f(B, C) + f(C, A)
$$

= $f(B + c, C + b) + f(b, A + B + c) + f(B + C + a, b)$
+ $f(A + C + b, B + C + a)$.

But the sum of the second and the third terms on the **RHS**

$$
= f(b, A + c) + f(C + a, b) = f(C + a, A + c),
$$

because $\{b, A + c, C + a\}$ is an admissible triangle (by (i)~(iii)). Finally, as C commutes with $A + b$ and $B + a$, C can be dropped off from the last term on the **RHS. |**

3.4 The above Propositions 5, 6, 7 will be applied later to the following case.

PROPOSITION 8: Let M be a non-empty subset of $\{1,2,\ldots,n\}$, and i, j, k be distinct indices from $\{1, \ldots, n\}$ not belonging to M. Put

$$
x_{iM}=\sum_{m\in M}x_{im},
$$

and define x_{jM} , x_{kM} similarly. Then the system

(3.4.1)
$$
\begin{cases} A = x_{iM}, & B = x_{jM}, C = x_{kM}, \\ a = x_{jk}, & b = x_{ki}, c = x_{ij} \end{cases}
$$

in \mathfrak{P}_n satisfies the conditions (i)(ii) of Proposition 6 and (iii) of Proposition 7. *In particular, if* $f \in \text{gr}^m\mathfrak{P}_4$ ($m > 1$) satisfies the 2,3,5 cycle relations, then f *satisties (3.3.2) and also*

$$
(3.4.2) f(A, B) + f(B, a) + f(a, A + B + c) + f(A + B + c, B + C + a)
$$

+ $f(B + C + a, A) = 0.$

Proof: We only note that

$$
B + c = -x_{jM'}, \quad A + B = \sum_{m \in M} (x_{im} + x_{jm}),
$$

M' being the complement of $M \cup \{i\}$ in $\{1, \dots, n\}$. These make it clear that $B + c$ commutes with $A = x_{iM}$ and that $c = x_{ij}$ commutes with $A + B$, and hence that $\{A, B, c\}$ forms an admissible triangle. The rest is obvious.

4. Extendabillty

4.1 Now let $m > 1$ and $f = f(x, y) \in \text{gr}^m\mathfrak{P}_4$ satisfy (2.2.1), (2.2.2), and $(2.2.4)(\text{in } \mathfrak{P}_4)$ and $(2.4.1)$ (in $\mathfrak{P}_5)$:

(2.2.1) $f(x, y) + f(y, x) = 0$,

$$
(2.2.2) \t\t [y, f(x,y)] + [z, f(x,z)] = 0,
$$

(2.2.4) $f(x, y) + f(y, z) + f(z, x) = 0,$

(2.4.1)
$$
\sum_{i \in \mathbb{Z}/5} f(x_{i,i+1}, x_{i+1,i+2}) = 0.
$$

Let $D_f^{(4)}$ be the derivation of \mathfrak{P}_4 defined in Proposition 2. Our goal is to show that for each $n \geq 5$, $\{D_f^{(4)}\}$ extends to an element $\{D_f^{(n)}\}$ of \mathcal{D}_n . (Recall that

(2.4.1) is a necessary condition for the extendability of $\{D_f^{(4)}\}$ to \mathcal{D}_5 (§2.4).) We can write down the formula for $D_f^{(n)}$ explicitly (see Theorem 2 and Proposition 9 below), but to prove that this formula really gives a well-defined derivation, etc., it is technically easier to construct first the corresponding 1-cocycle $a_f(\sigma)$ with respect to the S_n -action on $\operatorname{gr}^m\mathfrak{P}_n$, connected to $D_f^{(n)}$ by the formula

$$
\sigma D_f^{(n)} \sigma^{-1} - D_f^{(n)} = \text{Int } a_f(\sigma) \quad (\sigma \in S_n).
$$

We begin with this construction.

For each i $(1 \leq i \leq n-1)$, call σ_i the transposition $\sigma_i = (i, i+1) \in S_n$.

KEY LEMMA: There exists a unique 1-cocycle $S_n \to \text{gr}^m \mathfrak{P}_n$ ($\sigma \mapsto \text{af}(\sigma)$) such *that*

$$
a_f(\sigma_1) = a_f(\sigma_{n-1}) = 0,
$$

\n
$$
a_f(\sigma_i) = f(y_i, y_{i+1} - x_{i,i+1}) \quad (2 \le i \le n-2).
$$

Proof: Since the σ_i 's generate S_n , such a 1-cocycle is unique if exists at all. The existence relies heavily on the conditions (2.2.1), (2.2.4), and (2.4.1) satisfied by f , as we shall see.

As S_n is generated by the σ_i 's and the fundamental relations are

$$
\sigma_i \sigma_j = \sigma_j \sigma_i \quad (|i - j| > 1),
$$
\n
$$
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad (1 \leq i \leq n-2),
$$
\n
$$
\sigma_i^2 = 1 \quad (1 \leq i \leq n-1),
$$

it suffices to prove the following $(i) \sim (iii)$:

(i) $a_f(\sigma_i)$ is σ_j -invariant if $|i - j| > 1$,

(ii)
$$
a_f(\sigma_i) + \sigma_i a_f(\sigma_{i+1}) + \sigma_i \sigma_{i+1} a_f(\sigma_i)
$$

$$
=a_f(\sigma_{i+1})+\sigma_{i+1}a_f(\sigma_i)+\sigma_{i+1}\sigma_i a_f(\sigma_{i+1}) \quad (1\leq i\leq n-2),
$$

(iii)
$$
(1+\sigma_i)a_f(\sigma_i)=0 \quad (1\leq i\leq n-1).
$$

Proof of (i): If $j < i-1$ or $j > i+1$, then σ_j leaves y_i , y_{i+1} and $x_{i,i+1}$ invariant; hence σ_j also leaves $a_f(\sigma_i) = f(y_i, y_{i+1} - x_{i,i+1})$ invariant.

Proof of (ii): If we write $j = i + 1$, $k = i + 2$ and $M = \{1, 2, ..., i - 1\}$, then

(with the notation of Proposition 8),

LHS of (ii) =
$$
f(y_i, y_{i+1} - x_{i,i+1}) + f(y_i + x_{i,i+1}, y_{i+2} - x_{i,i+2})
$$

+ $f(y_{i+1} - x_{i,i+1}, y_{i+2} - x_{i,i+2} - x_{i+1,i+2})$
= $f(x_{iM}, y_{jM}) + f(x_{iM} + x_{ij}, x_{kM} + x_{jk}) + f(x_{jM}, x_{kM})$
= $f(A, B) + f(A + c, C + a) + f(B, C),$

and

RHS of (ii) =
$$
f(y_{i+1}, y_{i+2} - x_{i+1,i+2}) + f(y_i, y_{i+2} - x_{i,i+2} - x_{i+1,i+2})
$$

+ $f(y_i + x_{i,i+2}, y_{i+1} - x_{i,i+1} + x_{i+1,i+2})$
= $f(x_{jM} + x_{ij}, x_{kM} + x_{k i}) + f(x_{iM}, x_{kM}) + f(x_{iM} + x_{k i}, x_{jM} + x_{jk})$
= $f(B + c, C + b) + f(A, C) + f(A + b, B + a)$.

Therefore, they are equal by Propositions 7, 8.

Proof of (iii):
$$
(1+\sigma_i)a(\sigma_i) = f(y_i, y_{i+1}-x_{i,i+1}) + f(y_{i+1}-x_{i,i+1}, y_i) = 0.
$$

4.2 Consider the subgroup $S_2 \times S_{n-2} \subset S_n$ generated by σ_i $(1 \leq i \leq n-1, i \neq n-1)$ 2). Let $f, a_f(\sigma)$ be as in §4.1. Then

$$
a_f(\sigma) \in C_{12}
$$
 for $\sigma \in S_2 \times S_{n-2}$.

Indeed, $a_f(\sigma_i) \in C_{12}$ for $i \neq 2$ (as $y_i, x_{i,i+1} \in C_{12}$ for $i \geq 3$), and C_{12} is $(S_2 \times S_{n-2})$ -stable. Therefore, if $1 \leq i, j \leq n$ $(i \neq j)$, and $\sigma \in S_n$ is such that $\sigma(1) = i$, $\sigma(2) = j$, then $a_f(\sigma)$ mod C_{ij} is independent of the choice of σ . Call this class f_{ij} . Our goal is to prove:

THEOREM 2: The notation being as above, $D_f^{(n)}$: $x_{ij} \rightarrow [x_{ij}, f_{ij}]$ $(1 \le i, j \le j)$ $n, i \neq j$) defines a *y*-normalized special derivation of \mathfrak{P}_n which extends the deriva*tion* $D_f^{(4)}$ of \mathfrak{P}_4 and which satisfies

$$
\sigma D_f^{(n)} \sigma^{-1} - D_f^{(n)} = \text{Int } a_f(\sigma) \quad (\sigma \in S_n).
$$

First, we shall prove:

PROPOSITION 9: *If i < j, then*

$$
(4.2.1) \t f_{ij} \equiv f(y_i, x_{ij}) + \sum_{l=i+1}^{j-1} f(y_l, \sum_{k=1}^{l-1} x_{kj}) \; (\bmod \; C_{ij}) \qquad (y_1 = 0).
$$

Proof:

(i) The case $j = i + 1$. We shall prove

(4.2.2)
$$
f_{i,i+1} \equiv f(y_i, x_{i,i+1}) \; (\bmod \; C_{i,i+1})
$$

by induction on *i*. If $i = 1$, both sides are 0. Assume (4.2.2) for some $i \leq n - 2$. Then, as $\sigma_i \sigma_{i+1}$ maps $i, i+1$ to $i+1, i+2$ respectively,

$$
f_{i+1,i+2} \equiv a(\sigma_i \sigma_{i+1}) + (\sigma_i \sigma_{i+1}) f_{i,i+1}
$$

\n
$$
\equiv a(\sigma_i) + \sigma_i a(\sigma_{i+1}) + (\sigma_i \sigma_{i+1}) f_{i,i+1}
$$

\n
$$
\equiv f(y_i, y_{i+1} - x_{i,i+1}) + f(y_i + x_{i,i+1}, y_{i+2} - x_{i,i+2})
$$

\n
$$
+ f(y_{i+1} - x_{i,i+1}, x_{i+1,i+2})
$$

(mod $C_{i+1,i+2}$). Therefore,

$$
f_{i+1,i+2} \equiv f(A,B) + f(A+c, C+a) + f(B,a)
$$

= $f(A,B) + f(A+B+c, B+C+a) + f(B,a)$,

where $A = x_{iM}$, $B = x_{i+1,M}$, $C = x_{i+2,M}$, $a = x_{i+1,i+2}$, $b = x_{i,i+2}$, $c = x_{i,i+1}$, with $M = \{1, ..., i-1\}$. But

is admissible (Propositions 6, 8); hence

$$
f_{i+1,i+2} \equiv f(A+B+c,a) + f(A, B+C+a)
$$

= $f(B+c,a) + f(A, B+C)$
 $\equiv f(B+c,a) \pmod{C_{i+1,i+2}}$
= $f(y_{i+1}, x_{i+1,i+2}) \pmod{C_{i+1,i+2}}$,

because A and $B + C$ commutes with $a = x_{i+1,i+2}$. This settles the case (i).

(ii) *The general case* $j \ge i + 1$. Induction on j. Apply σ_j on (4.2.1) to get

$$
f_{i,j+1} - a_f(\sigma_j) \equiv f(y_i, x_{i,j+1}) + \sum_{l=i+1}^{j-1} f(y_l, \sum_{k=1}^{l-1} x_{k,j+1}) \; (\bmod C_{i,j+1}),
$$

which gives

$$
f_{i,j+1} \equiv f(y_i, x_{i,j+1}) + \sum_{l=i+1}^{j} f(y_l, \sum_{k=1}^{l-1} x_{k,j+1}). \qquad \blacksquare
$$

4.3 PROOF OF THEOREM 2

(I) That $D_f^{(n)}: x_{ij} \to [x_{ij}, f_{ij}]$ defines a derivation of \mathfrak{P}_n . To prove this, it suffices to check:

$$
\text{(i)} \hspace{1cm} f_{ij} \equiv f_{ji} \; (\bmod C_{ij}),
$$

(ii)
$$
\sum_{i=1}^{n} [x_{ij}, f_{ij}] = 0 \quad (1 \leq j \leq n),
$$

(iii)
$$
f_{ij} - f_{kl} \in C_{ij} + C_{kl} \text{ if } \{i, j\} \cap \{k, l\} = \phi
$$

(of. Proposition 3).

Proofs of (i), (ii), and (iii):

- (i) $a_f(\sigma \sigma_1) = a_f(\sigma) + \sigma a_f(\sigma_1) = a_f(\sigma)$ for any $\sigma \in S_n$.
- (ii) For each $j \geq 2$,

$$
S_j := \sum_{i=1}^{j-1} [x_{ij}, f_{ij}] = \sum_{i=1}^{j-1} [x_{ij}, f(y_i, x_{ij})]
$$

+
$$
\sum_{i=1}^{j-1} \sum_{l=i+1}^{j-1} [x_{ij}, f(y_l, \sum_{k=1}^{l-1} x_{kj})]
$$

By changing the order of summation in the second term on the RHS, we obtain

$$
S_j = \sum_{l=2}^{j-1} \{ [x_{lj}, f(y_l, x_{lj})] + [\sum_{k=1}^{l-1} x_{kj}, f(y_l, \sum_{k=1}^{l-1} x_{kj})] \}.
$$

But since x_{ij} , y_i and $\sum_{k=1}^{l-1} x_{kj}$ form an admissible triangle, each summand in the above expression for S_j must be 0 by Proposition 5 (ii). Therefore, $S_j = 0$.

In particular, for $j = n$,

$$
\sum_{\nu\neq n} [x_{\nu n}, f_{\nu n}] = 0.
$$

Now let j be any index $(1 \leq j \leq n)$ and $\sigma \in S_n$ be such that $\sigma(n) = j$. Then $\sigma f_{\nu n} \equiv f_{\mu j} - a_f(\sigma) \pmod{C_{\mu j}}$, where $\mu = \sigma(\nu)$, and $\sum_{\mu \neq j} x_{\mu j} = 0$; hence

$$
\sum_{\mu\neq j} [x_{\mu j}, f_{\mu j}] = 0.
$$

This settles (ii).

(iii) It suffices to prove this for *one* choice of a quadruple $\{i, j, k, l\}$. This is because S_n acts transitively on such quadruples and

$$
f_{\sigma i, \sigma j} \equiv \sigma f_{ij} + a_f(\sigma) \mod C_{\sigma i, \sigma j},
$$

$$
f_{\sigma k, \sigma l} \equiv \sigma f_{kl} + a_f(\sigma) \mod C_{\sigma k, \sigma l}.
$$

Choose $\{i,j\} = \{1,2\}, \{k,l\} = \{n-1,n\}.$ Then $f_{12} \equiv 0 \pmod{C_{12}}$ (obvious), and $f_{n-1,n} \equiv 0 \pmod{C_{n-1,n}}$ by Proposition 9 (because $y_{n-1} = -x_{n-1,n}$). Therefore, $f_{1,2} - f_{n-1,n} \in C_{12} + C_{n-1,n}$.

Therefore, $D_f^{(n)}$ defines a derivation of \mathfrak{P}_n , which is obviously special. Write $D = D_f^{(n)}$.

- (II) Since we have shown above that $S_j = 0$, we have $D(y_j) = 0$ ($2 \le j \le n-1$). Therefore, D is y -normalized.
- (III) For each k, l $(1 \leq k, l \leq n)$, $k \neq l$, choose $\tau_{kl} \in S_n$ which map 1,2 to k, l respectively. Then $D(x_{kl}) = [x_{kl}, a_f(\tau_{kl})]$. For each i $(1 \leq i \leq n - 1)$ 1), consider the derivation $\sigma_i D \sigma_i^{-1} - D$ of \mathfrak{P}_n . Then this maps x_{kl} to $[x_{kl}, \sigma_i(a_f(\sigma_i^{-1}\tau_{kl})) - a_f(\tau_{kl})] = [x_{kl}, -a_f(\sigma_i)] = [a_f(\sigma_i), x_{kl}],$ for any k, l. Therefore, $\sigma_i D \sigma_i^{-1} - D = \text{Int } a_f(\sigma_i)$.
- (IV) Finally, since $D(x_{23}) = [x_{23}, t_{23}] = [x_{23}, f(y_2, x_{23})] = [x_{23}, f(x_{12}, x_{23})]$, and $D(x_{12}) = 0$, D extends $D_f^{(4)}$.

4.4 From Theorem 2, the "if" implication of Theorem 1, as well as the Main Theorem (§1.2), follow immediately.

Remark: Drinfeld shows, in a slightly different language (plane braids on 4 strings instead of sphere braids on 5 strings) that (2.2.2) follows from (2.2.1), (2.2.4), and (2.4.1) (see [1] §5 (Proposition 5.7)).

References

- [1] V. G. Drinfeld, *On quasi-triangular quasi-Hopf algebras* and some *group closely* associated with $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$, Leningrad Math. J. 2 (1991), No. 4, 829-860.
- [2] A. Grothendieck, *Esqulsse d'un* programme, mimeographed note, 1984.
- [3] Y. Ihara, *The Galois representation arising from* $P^1 \{0, 1, \infty\}$ and *Tate twists of even degree,* in *Galois Groups* over Q, Publ. MSRI no. 16 (1989), Springer, pp. 299-313.
- [4] Y. Ihara, *A utomorphlsms of pure* sphere *braid* groups *and* Galois *representations,* The Grothendieck Festschrift, Vol. 2 Progress in Math. no. 87 (1991), Birkhäuser, pp. 353-373.
- [5] Y. Ihara, *Braids,* Ga/ois groups, *and some arithmetic* functions, Proc. of the International Congress of Mathematicians, Kyoto 1990, Vol I, pp. 99-120.
- [6] Y. Ihara, *Derivations of the Lie* aigebra *associated with* F0,,,P 1 *and the* image of *Oai(Q/Q) (in* Japanese), Algebraic Number Theory (RIMS ed.), report 721 (1990), 1-8.
- [7] Y. Ihara and M. Kaneko, *Pro-I pure braid* groups of R/emann surfaces and *Oaiois representations,* Osaka J. Math. 29 (1992), 1-19.
- [8] T. Kohno, *On the holonomy Lie* a/gebra *and the nilpotent completion of the fundamental* group of *the complement* of *hypersurfaces,* Nagoya Math. J. 92 (1983), 21-37.